Fourier Analysis

Review
Consider the Time-dependent heat equation on the real line

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in \mathbb{R}, \quad t>0 \\
u(x, 0)=f(x) .
\end{array}\right.
$$

Define

$$
H_{t}(x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}, \quad x \in \mathbb{R}, t>0
$$

Let $S(\mathbb{R})$ denote the Schwartz space.
Then

$$
U(x, t)=f_{*} \mathscr{P}_{t}(x), \quad(x, t) \in \mathbb{R} \times \mathbb{R}_{+}
$$

is a solution of the heat equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{\partial^{2} u}{\partial x^{2}} \text { on } \mathbb{R} x \mathbb{R}_{+} \\
\lim _{t \rightarrow 0} U(x, t)=f(x) .
\end{array}\right.
$$

However, it is not the unique solution. For instance, $\widetilde{u}=f * \mathscr{P}_{t}(x)+\frac{x \mathscr{H}_{t}(x)}{t}$ is another solution.

Def. Given a function $U(x, t)$ on $\mathbb{R} \times \mathbb{R}_{+}$, we say that $U(\cdot, t)$ belongs to $S(\mathbb{R})$ uniformly in t if $U(\cdot, t) \in S(\mathbb{R})$ for all $t>0$, and moreover, for each $T>0$, and each $k, l \geqslant 0$.

$$
\sup _{\substack{x \in \mathbb{R} \\ 0<t<T}}\left|x^{k} \cdot \frac{\partial^{l} u(x, t)}{\partial x^{l}}\right|<\infty .
$$

check: $\quad \frac{x}{t} \cdot H_{t}(x)$ does not belongs to $S(\mathbb{R})$ uniformly in t.

Because $\sup _{x \in \mathbb{R}}\left|\frac{x}{t} \mathscr{P}_{t}(x)\right| \geqslant \sup \left|\frac{\sqrt{t}}{t} \mathscr{H}_{t}(\sqrt{t})\right|$

$$
\begin{aligned}
\alpha<t<T \quad & 0<t<T \\
= & \sup _{0<t<T} \frac{1}{\sqrt{4 \pi} t} \cdot e^{-\frac{1}{4}} \\
= & +\infty
\end{aligned}
$$

Tho (Uniqueness).
Let $u \in C^{\infty}\left(\mathbb{R} \times \mathbb{R}_{+}\right) \cap C(\mathbb{R} \times[0, \infty))$. Suppose U satisfies the following properties.
(1) $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ on $\mathbb{R} \times \mathbb{R}_{+}$;
(2) $U(x, 0)=0$ for all $x \in \mathbb{R}$;
(3) $U(\cdot, t) \in S(\mathbb{R})$ Uniformly in t.

Then $U(x, t)=0$ on $\mathbb{R} \times \mathbb{R}_{+}$.

Pf. (Energy method)
Define for $t \geq 0$,

$$
E(t)=\int_{-\infty}^{\infty}|U(x, t)|^{2} d x
$$

In particular, $\quad E(0)=0, \quad E(t) \geqslant 0$ for $t \geqslant 0$.

Observe that

$$
\frac{d}{d t} E(t)=\frac{d}{d t} \int_{-\infty}^{\infty}|u(x, t)|^{2} d x
$$

$$
\begin{aligned}
& \stackrel{\text { By (DCT) }}{=} \int_{-\infty}^{\infty} \frac{d}{d t}|U(x, t)|^{2} d x \\
& \begin{array}{|c|c|}
\substack{\text { Here we need } \\
\text { to we } U \in C^{c}\left(\mathbb{R} \times \mathbb{R}_{t}\right) \\
\text { and } \\
\text { unit. } \\
\text { un } \\
\text { in } t \text {. }}
\end{array}=\int_{-\infty}^{\infty} \frac{d}{d t}(U(x, t) \overline{U(x, t)}) d x \\
& =\int_{-\infty}^{\infty}\left(\partial_{t} u(x, t)\right) \cdot \overline{u(x, t)} \\
& +u(x, t) \overline{\partial_{t} u(x, t)} d x \\
& =\int_{-\infty}^{\infty} \frac{\partial^{2} u}{\partial x^{2}} \cdot \bar{u}+u \cdot \frac{\partial^{2} \bar{u}}{\partial x^{2}} d x
\end{aligned}
$$

Integration by parts

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial x} \bar{u}\right|_{x=-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{\partial u}{\partial x} \cdot \frac{\partial \bar{u}}{\partial x} d x \\
+ & \left.u \cdot \frac{\partial \bar{u}}{\partial x}\right|_{x=-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{\partial u}{\partial x} \cdot \frac{\partial \bar{u}}{\partial x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =-2 \int_{-\infty}^{\infty} \frac{\partial u}{\partial x} \cdot \frac{\partial \bar{u}}{\partial x} d x \\
& =-2 \int_{-\infty}^{\infty}\left|\frac{\partial u}{\partial x}\right|^{2} d x \\
& \leqslant 0 .
\end{aligned}
$$

Hence $E(t)$ is a non-increasing function

$$
\text { on }(0, \infty) \text {. }
$$

But $E(0)=0$, so $E(t) \leqslant 0$ for $t>0$.
However, by definition $\quad E(t) \geq 0$.
As a consequence,

$$
E(t) \equiv 0 \text { for all } t \geq 0
$$

That is

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|u(x, t)|^{2} d x \equiv 0 . \\
\Rightarrow & u(x, t) \equiv 0 .
\end{aligned}
$$

Prop. Let $f \in S(\mathbb{R})$ and let

$$
U(x, t)=f * H_{t}(x) .
$$

Then $U(\cdot, t) \in S(\mathbb{R})$ uniformly in t in the sense that

$$
\sup _{\substack{x \in \mathbb{R} \\ 0<t<T}}\left|x^{k} \frac{\partial^{l} U(x, t)}{\partial x^{l}}\right|<\infty
$$

for any $T>0$ and $k, l \geq 0$.
Pf. Without loss of generality, we only prove (**) in the care when $k=1, l=1$.

Let $T>0$.

$$
\begin{aligned}
\frac{\partial u(x, t)}{\partial x} \xrightarrow{\tilde{f}} & (2 \pi i \xi) \widehat{u}(\xi, t) \\
& =2 \pi i \xi \cdot \hat{f}(\xi) \cdot e^{-4 \pi^{2} \xi^{2} t}
\end{aligned}
$$

$$
(-2 \pi i x) \cdot \frac{\partial u(x, t)}{\partial x} \stackrel{\sigma_{f}}{d\left(2 \pi i \hat{\xi} \hat{f}(\xi) e^{-4 \pi^{2} \xi^{2} t}\right)} \frac{d \xi}{d \xi}
$$

By Inversion formula,

$$
\begin{aligned}
& -2 \pi i x \cdot \frac{\partial U(x, t)}{\partial x} \\
& =\int_{\mathbb{R}} \frac{d\left(2 \pi i \hat{\xi} \hat{f}(\xi) e^{-4 \pi^{2} \xi^{2} t}\right)}{d \xi} e^{2 \pi i \xi x} d \xi
\end{aligned}
$$

So

$$
\left.\begin{aligned}
& \sup _{\substack{x \in \mathbb{R}}} 2 \pi\left|x \cdot \frac{\partial u}{\partial x}(x, t)\right| \\
& 0<t<T
\end{aligned} \sup _{\substack{x \in \mathbb{R} \\
0<t<T}} \int_{\mathbb{R}} \right\rvert\, \underbrace{\frac{d\left(2 \pi i \hat{\xi} \hat{f}(\xi) e^{-4 \pi^{2} \xi^{2} t}\right)}{d \xi}}_{(* * *)} \underbrace{\frac{d \xi}{}}
$$

$$
=\sup _{0<t<T} \int_{\mathbb{R}}|(* * *)| d \xi
$$

Notice that

$$
\begin{aligned}
& (* * *)=2 \pi i\left[(\xi \hat{f}(\xi))^{\prime} e^{-4 \pi^{2} \xi^{2} t}\right. \\
& \left.+\xi \hat{f}(\xi) \cdot e^{-4 \pi^{2} \xi^{2} t} \cdot(-8 \pi \xi t)\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
&|(* * *)| \leqslant 2 \pi \cdot\left|(\xi \hat{f}(\xi))^{\prime}\right| \\
&+16 \pi^{2}\left|\xi^{2} \hat{f}(\xi)\right| \cdot t
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sup _{\alpha \in t<T} \int_{\mathbb{R}}|(* * *)| d \xi \\
& \leqslant 2 \pi \int\left|(\xi \hat{f}(\xi))^{\prime}\right| d \xi \\
& \quad+16 \pi^{2} \int_{\mathbb{R}} 1 \xi^{2} \hat{f}(\xi) \mid d \xi \cdot T
\end{aligned}
$$

Application 2: Steady state heat equation on the upper nalf plane.

$U=U(x, y)$ temperation distribution

$$
\left\{\begin{array}{l}
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 . \tag{1}\\
u(x, 0)=f(x) .
\end{array}\right.
$$

Now we use Fourier transform to derive a solution by some formal arguments.

Taking Fourier transform in x-variable in (1) gives

$$
(2 \pi i \xi)^{2} \hat{u}(\xi, y)+\frac{\partial^{2} \hat{u}(\xi, y)}{\partial y^{2}}=0
$$

That is, $\quad \frac{\partial^{2} \hat{u}(\xi, y)}{\partial y^{2}}-4 \pi^{2} \xi^{2} \widehat{u}(\xi, y)=0$

For fixed ξ, the above is a linear 2 nd order $O D E$. The general solution is

$$
\widehat{u}(\xi, y)=A(\xi) e^{-2 \pi|\xi| y}+B(\xi) e^{2 \pi|\xi| \cdot y}
$$

We remove the second part since it is rapidly increasing Therefore

$$
\widehat{u}(\xi, y)=A(\xi) e^{-2 \pi|\xi| y} .
$$

Taking $y=0$,

$$
\widehat{u}(\xi, 0)=A(\xi)=\hat{f}(\xi)
$$

That is

$$
\widehat{u}(\xi, y)=\hat{f}(\xi) \cdot e^{-2 \pi / \xi \mid y} .
$$

Now we introduce the poisson kernel on the upper half plane:

$$
\jmath_{y}(x)=\frac{1}{\pi} \cdot \frac{y}{x^{2}+y^{2}}, \quad x \in \mathbb{R}, \quad y>0
$$

claim: $\hat{\rho_{y}}(\xi)=e^{-2 \pi|\xi| y}$ for $y>0$.
Hence $\quad \hat{u}(\xi, y)=\hat{f}(\xi) \cdot \hat{P}_{y}(\xi)$

$$
=\widehat{f * \rho_{y}}(\xi)
$$

By Inversion formula,

$$
u(x, y)=f * \rho_{y}(x), x \in \mathbb{R}, y>0 .
$$

Lem 1.
(1) $\int_{-\infty}^{\infty} e^{-2 \pi / x \mid y} e^{-2 \pi i \xi x} d x$

$$
=\rho_{y}(\xi)
$$

(2) $\int_{-\infty}^{\infty} P_{y}(\xi) e^{-2 \pi i \xi x} d \xi=e^{-2 \pi / x / y}$

Pf. Remember for $a>0$,

$$
e^{-a|x|} \xrightarrow{\sigma_{f}} \frac{2 a}{a^{2}+4 \pi^{2} \xi^{2}}
$$

Lettif $a=2 \pi y$ gives

$$
\begin{aligned}
e^{-2 \pi y|x|} \xrightarrow{\sigma_{f}} \frac{2 \cdot 2 \pi y}{(2 \pi y)^{2}+4 \pi^{2} \xi^{2}} & =\frac{1}{\pi} \cdot \frac{y}{y^{2}+\xi^{2}} \\
& =\rho_{y}(\xi)
\end{aligned}
$$

This proves (1).
By (1) and Inversion formula,

$$
\int P_{y}(\xi) e^{+2 \pi i \xi x} d \xi=e^{-2 \pi y|x|}
$$

Taking complex conjugate on both sides gives (2)

